Thermo SIG Progress Report 2024

Sergej Blagov,
Jasper van Baten,
Klaus Möller,
Richard Szczepanski,
Kyle Abrahams,

BASF / Germany

AmsterCHEM / Spain

University of Cape Town / South Africa

KBC / UK

CO-LaN / South Africa

Thermo SIG Membership

- Sergej Blagov
- Jasper van Baten
- Klaus Möller
- Kyle Abrahams
- Richard Szczepanski

- BASF (co-leader)
- AmsterCHEM (co-leader)
- University of Cape Town
- CO-LaN
- KBC Advanced Technologies Ltd

Thermo SIG Charter: Scope

- ☐ Thermodynamics and Physical Properties interface specification COM v1.0 (deprecated)
- Thermodynamics and Physical Properties interface specification COM v1.1 (active)
- □ Thermodynamics and Physical Properties interface specification COBIA
 v1.2 (unpublished but in production)
- □ Custom Data interface specification v1.1 (active) (+v1.2)
- □ Chemical Reactions interface specification v1.1 (+v1.2)
- □ Compound Server interface specification?

and related documents, files, tools, software, and procedures.

Thermo SIG Charter: Key Responsibilities

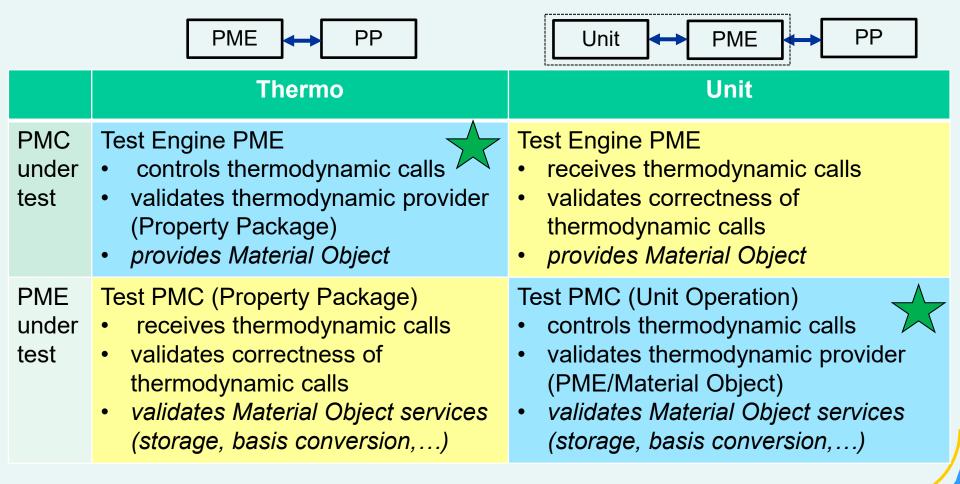
- Maintain and manage active interface specifications
 - Provide revisions to improve design, performance and robustness
 - Provide errata and clarifications and integrate in specifications
- Assess and prioritize on extending specifications
- □ Help CO-LaN members to develop implementations of thermodynamic interfaces
 - Provide advice to software developers
 - on migration to newest interface specifications
 - on migration from COM to COBIA
 - on new implementations
 - Analyze interoperability issues between PME and PMCs
- **□** Define compliancy tests for thermodynamic interface specifications

Deprecation of v1.0

- □ Deprecated per December 31, 2017
- Discussed at the CAPE-OPEN 2017 Annual Meeting
- □ CO-LaN no longer supports this specification.
- □ There will be no update of the specification document.
- ☐ There will be no additional Errata & Clarifications
- □ CO-LaN is encouraging all software developments to use version 1.1+ interface specification.
- □ Consequently: we removed it from our charter.
- □ CAPE-OPEN 1.0 TLB will remain part of the CAPE-OPEN 1.1 type library installer

Summary of activities 2023-2024

- □ Thermodynamics and Physical Properties v1.1
 - Completion of Chemical Reaction Interface specification
 - Specification of tests
 - Completed Property Package PMC testing specification
 - Except Common Interfaces → M&T SIG responsibility
 - Completed Material Object specification of Unit PMC testing
 - Errata & Clarifications
 - Numerous issues clarified → Extensive document set
 - Revised interface and method descriptions for nearly all Thermodynamic interfaces



Chemical Reactions interface specification

- Manager Common interface specification is published
 - Interface specification available from CO-LaN web site
 - IDL in preparation: COBIA route (COBIA presentation)
- □ References are incorporated into revised Chemical Reactions interface specification: use cases updated
- □ Chemical Reactions interface specification is submitted for a second RFC
- ☐ Release strategy (to do):
 - Publish Specification Document on CO-LaN web site
 - IDL: COBIA route (COBIA presentation)

- Active thermodynamic interface testing:
 - Collection of Test Specifications
 - Go hand-in-hand with Errata and Clarifications

- □ Property Package PMC Testing was initial focus (Test suite beta release)
- ☐ Unit PME Testing: very similar; unit can actively exercise thermodynamics
 - But: thermodynamics implemented by Material Object, fixed component slate
 - Not yet on release path

	Thermo	Unit
PMC under test	 Test Engine PME controls thermodynamic calls validates thermodynamic provider (Property Package) provides Material Object 	 Test Engine PME ives thermodynamic calls Van Minor rectness of thermody modifications provides Material ations
PME under test	 Test PMC (Property Package) receives thermodynamic calls validates correctness of thermodynamic calls validates Material Object services (storage, basis conversion,) 	 Test PMC (Unit Operation) controls thermodynamic calls validates thermodynamic provider (PME/Material Object) validates Material Object services (storage, basis conversion,)

■ Unit PMC Testing

- Opposite traffic: thermodynamics interface gets exercised
- Requirement on the Material Object: detect incorrect calls only
- Material Object implementation specifications delivered

	Thermo	Unit
PMC under test	 Test Engine PME controls thermodynamic calls validates thermodynamic provider (Property Package) provides Material Object 	 Test Engine PME receives thermodynamic calls validates correctness of thermodynamic calls provides Material Object
PME under test	 Test PMC (Property Package) receives thermodynamic calls validates correctness of thermodynamic calls validates Material Object services (storage, basis conversion,) 	 Test PMC (Unit Operation) controls thermodynamic calls validates thermodynamic provider (PME/Material Object) validates Material Object services (storage, basis conversion,)

■ Unit PMC Testing

- Opposite traffic: thermodynamics interface gets exercised
- Requirement on the Material Object: detect incorrect calls only
- Material Object implementation specifications delivered

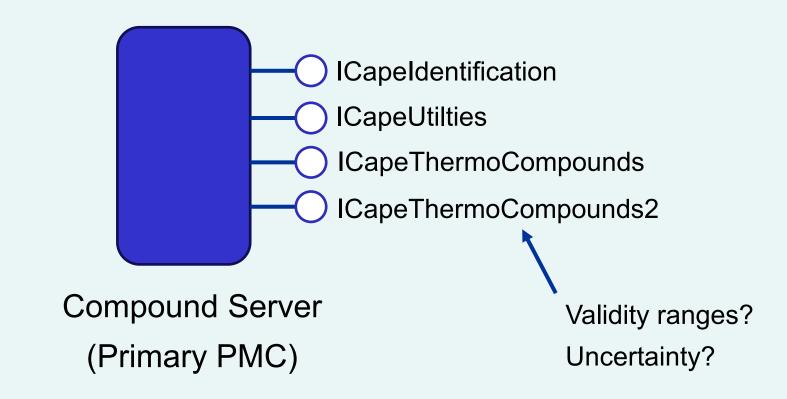
	Thermo	Unit
PMC under test	 Test Engine PME controls thermodynamic calls validates thermodynamic provider (Property Package) provides Material Object 	 Test Engine PME receives thermodynami validates correct ations thermodynamications Minoraterial Object
PME under test	 Test PMC (Property Package) receives thermodynamic calls validates correctness of thermodynamic calls validates Material Object services (storage, basis conversion,) 	 Test MC (Unit Operation) controls thermodynamic calls validates thermodynamic provider (PME/Material Object) validates Material Object services (storage, basis conversion,)

E&C: release strategy

- E&C cannot be released without RFC
 - RFC modifications may be challenged by community
- □ Test suite and E&C are interdependent
 - E&C are adapted to ensure testability of standard
 - Tests depend extensively on new E&C Documentation
- ☐ Test suite beta goes hand-in-hand with E&C RFC
 - Separate presentation by Malcolm Woodman
- ☐ Integration of E&C into main document postponed:
 - Prerequisite: Common Source CAPE-OPEN Documentation
 - Separate presentation by Kyle Abrahams

☐ History

- Physical Properties Data Bases Interface: too complex
- CAPE-OPEN 1.1 offers ICapeThermoCompounds
 - Sufficient for pure compound information
 - No functional description
 - No validity range on T- (and P-) dependent properties
 - No mixture data (binary interaction coefficients)
- Honeywell expressed interest in a simpler design, around 2008
- Thermo SIG drafted initial "Compound Database Component" specification, 2011
 - Compound Server: ICapeThermoCompounds implementation
 - Compound Correlation Server: as above + correlations with coefficients and range
 - No mixture data: deemed not useful due to dependence on specific models
- Honeywell was no longer actively participating, so proposal was shelved



☐ Recent discussions

- Physical Properties Data Bases Interface: too complex
- CAPE-OPEN 1.1 offers ICapeThermoCompounds
 - Sufficient for pure compound information
 - No mixture data (binary interaction coefficients)
 - No functional description
 - No validity range on T- (and P-) dependent properties
- Honeywell expressed interest in a simpler design, around 2008
- Thermo SIG drafted initial "Compound Database Components" specification, 2011
 - Compound Server: ICapeThermoCompounds implementation
 - Compound Correlation Server: as above + correlations with coefficients and range
 - No mixture data: deemed not useful due to dependence on specific models
- Honeywell was no longer actively participating, so proposal was shelved

□ Revised proposal

□ Future:

- Is there an interest in the community to follow-up?
- Should Thermo SIG:
 - Make a revised and simplified proposal?

or

Drop this from the Charter?

Outlook 2024-2025

- Work outlined for coming year:
 - Support
 - Provide feedback for certification implementations
 - Maintain and manage existing interface specifications
 - Publish Chemical Reactions interface specification and IDL
 - Design structure for Common Source CAPE-OPEN Document
 - Integration of E&C documentation

Questions?

Thank you for your attention!

GO CAPE-OPENI

Backup

E&C: some changes in 2024

- □ Common
 - Clarification on when errors are valid
 - Clarification on which methods are mandatory
 - Clarification on present phases and phase status
 - Expected behavior on unphysical values (e.g., negative T)
 - Clarifications on basis conversions
- □ Property Routine
 - Supported Properties must be calculatable at some condition
 - Clarifications on missing and partial values
 - Absent compounds and present compounds with zero (mole-) fraction should yield same result
 - Clarification on phase order for TwoPhase properties
- **☐** Equilibrium Routine
 - If CalcEquilibrium fails, state of Material Object is undefined

