

DEXPI and CAPE-OPEN Progress and Prospects One Year On

David Cameron University of Oslo

Gregor Tolksdorf

Evonik

Why DEXPI (+ CAPE-OPEN/COLaN)?

DEXPI R Data Exchange in the Process Industry

DEXPI Problem Statement

PFD – Process Flow Diagram

Back to the Future

What we are trying to avoid

ISO 10303-221:2007(E) Application protocol: Functional data and their schematic representation for process plants

DEXPI

Data Exchange in the Process Industry

DEXPI is a data model, not just a document exchange format!

DEXPI Process and Plant

A Framework for Storing and Exchanging Process and Plant Design

Today's Process Design Approach

Aspects of a Plant

Three aspects: function (process), behaviour and structure (plant)

Connected blocks and parameters

Streams provide support for a flexible stream table

Philosophy built on CAPE-OPEN and OntoCAPE

A **Material Template** defines the structure of a family of streams.

The **Material State** object can be configured to contain data for total streams and each phase.

This offers potential for data exchange with simulators. With a CAPE-OPEN specification?

A hierarchy of process steps

Characterized by reference data for *activities,* verbs, not things, nouns.

- Generate Flow: Compressing and Pumping.
- Mix.
- Split.
- Transport Material and Energy.
- Store.
- Supply Materials and Energy.
- Supply Exchange of Thermal Energy.
 - Heating, Cooling, Exchange of Heat.
- Separation.
 - Phase separation, Thermal processes, Filtering, Electromagnetics, Physical Processes.
- Process solids.
 - Reduce size, Increase size, Form material.
- React Chemicals.
- Packaging.

PROCESS STEP / Technical Systems

What must be done? Separate, Transport, Compress...

> Unit Operations / Component Systems

What must be done? How? Separate by distillation, Transport in piping, Compress by centrifugal motion

Using DEXPI Process files to Store Design Cases

Model	Characterizations	
Dataset containing structure of the process		 Datasets containing specifications of the process ProcessSteps with Parameter values ProcessConnections with Specified values in MaterialState, EnergyFlow or InformationFlow values
- ProcessSteps with Ports Parameters - ProcessConnections		Datasets containing results, the behaviour of the process - ProcessSteps with Parameter values - ProcessConnections with calculated values in MaterialState, EnergyFlow or InformationFlow values

Interactions with Simulator

- Manual, simulator-specific mapping of DEXPI Process Steps to Unit Operations in Library.
- Manual mapping of stream identifiers.
- Manual mapping of Material Template structures.
- No configuration or writing of parameters to PME in CAPE-OPEN

Could be automated once mappings are done.

Interaction Points for the Monitoring Interface

DEXPI Process Structures and CAPE-OPEN objects

ICapeFlowsheetMonitoring::GetUnitOperationCollection

ICapeFlowsheetMonitoring::GetStreamCollection

Extracting Process Information from Simulators

Preliminary work (for each of your preferred simulators) – mapping types.

- Map **ProcessStep types** in DEXPI standard to library **Unit Operations** in process simulator.
- Map standard **port** structures in DEXPI standard to library Unit Operation ports in process simulator.
- Map block **Parameters** with exposed parameters from each library Unit Operation.

Project-specific work – mapping instances

- Map **DEXPI Material Template** with **CAPE-OPEN Material Object** structure.
- Map DEXPI ProcessStep identifiers with Unit Operation identifiers.
- Map DEXPI Parameter identifiers (if necessary) with exposed Parameter identifiers.
- Map DEXPI Stream, EnergyFlow and InformationFlow identifiers with Unit Operations identifiers.
- Map **CAPE-OPEN Material Objects** with DEXPI Material State objects.