

BIO4 FUELS

Bio4Fuels

Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Bio4Fuels: Efficient and sustainable use of biomass as a renewable feedstock

<u>Filippo Bisotti</u>, Matteo Gilardi, Olaf T. Berglihn, Theresa Rücker, Torbjørn Pettersen, Bernd Wittgens

Contact: filippo.bisotti@sintef.no

Outlines

- Introduction
 - Why we need to re-think the modelling of bioprocesses
 - Our strategy
 - Hurdles in our strategy
- Case study: Bio4Fuel project from lab scale to relevant scale biorefinery
 - Our strategy step-by-step
 - Key advantage of the strategy using CAPE-open tools
- Conclusions
- Overlook on CAPE-open tools in SINTEF Industry's projects

BIO4 FUELS

- Current models in **flowsheet simulators** for pyrolysis, gasification, and biomass pretreatment (steam explosion...) are too simplified
- Often solely based on estimated yields
- What happens if you change the <u>feed</u> or the <u>operating</u> <u>conditions</u>?

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Why re-thinking bioprocess modelling?

Why re-thinking bioprocess modelling?

Only rigorous models allow for:

- describing a wide range of feedstocks without extensive measurements to re-tune the yield-based model
- designing and sizing the unit
- *"make it as simple as* possible but not simpler"

PYROLYSIS PYROLYSIS

Our strategy for Biomass-to-X processes

Gilardi, Bisotti et al., Modelling of Biomass-to-X: Challenges and Strategies

BIO

FUFI'S

5

The loop of process modelling & design with technology assessment

- **Design** purposes
- Upscaling
- Environmental assessment
- **Preliminary cost estimates**

Solution

- Strategies and approaches for the modelling
- Define criteria for flowsheet development of processes from lab-to-plant

Constraints

Issues

feedstocks

Chemistry

Simplified but accurate approaches to ensure good predictability

Complexity and variability of the bio-based

Unconventional processes

Complexity of their thermodynamic

Keep a **reasonable computational effort** .

CAPE-open 2024 Annual Meeting, Berlin, October 8-9

Transparency

- Data are open
- Models are published and validated or tuned for a specific application
- TEA is transparent (i.e., correlations are retrieved from the literature and estimates documented)
- LCA is trackable (i.e., databases are open-source as the toolbox)

Case study

Bio4Fuels overview

- Funded by the Norwegian Research Institute (Forskningsrådet) for 12.8 M€
- Bio4Fuels developed new technologies to ensure efficient and sustainable use of biomass as a renewable feedstock for integrated heat, power, and fuel production and transportation
- International R&D and industrial partners

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

CAPE-open 2024 Annual Meeting, Berlin, October 8-9

Bio4Fuels objectives

- Analysis of an innovative **biorefinery** where **all constituents are converted into fuels**
- Improve cellulose saccharification (i.e., sugar yield) to increase the overall biorefinery yield
- Efficiently valorise each of its building blocks to optimize the yield and the economics

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

BIO4 FUELS

 \bigcirc

SINTEF

CAPE-open 2024 Annual Meeting, Berlin, October 8-9

Chemistry and data

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

INCREASE CARBON EFFICIENCY → Complex chemistry and operations

- Strategy → series of operations and reactive steps
 - Separate efficiently cellulose, hemicellulose, lignin
 - Increase sugar yield
 - Valorise wasted carbon in lignin
- Specific data (measurements) and details on what is happening (molecules and chemistry)

Species

- Quite "exotic" molecules \rightarrow potentially missing data
- From hundreds of thousands to a manageable number of species to mimic the system

Species: reactants

OH

Chemical Kinetics of Biomass Pyrolysis | Energy & Fuels (acs.org)

Development of a multiphase chemical reactor network method as a tool for simulating biomass gasification in fluidized beds - ScienceDirect

Species: bio-"crude" unconventional molecules

FIS

Chemical Kinetics of Biomass Pyrolysis | Energy & Fuels (acs.org)

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

BIO4 FUELS

 \bigcirc

SINTEF

From lab-scale to industrial facility

Sub-block (i.e., sub-models) identification:

- Remove lab-scale steps that cannot be replicated on an industrial scale
- Identify missing steps and design a comprehensive process
- Identify a feasible and valuable path to convert biomass into added-value chemicals

 \bigcirc

COCO COFE V3.6 **AmsterCHEM**

ChemSep 8.40

CO LaN

Simulation tools

CAPE-open 2024 Annual Meeting, Berlin, October 8-9

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

COCO - the CAPE-OPEN to CAPE-OPEN simulator (cocosimulator.org)

Modelling

Different types of models to characterise each step

- Rigorous/detailed
- Data-driven
- Short-cut

 \bigcirc SINTEF

Sub-models implementation

Example: Pyrolisis model

Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.) PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering (ESCAPE33), June 18-21, 2023, Athens, Greece © 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50123-2

Soft modelling of spruce conversion into bio-oil through pyrolysis – Note II: pyrolysis

Filippo Bisotti,^{a,*} Matteo Gilardi,^a Olaf T. Berglihn,^a Roman Tschentscher,^b Vincent G.H. Eijsink,^c Anikó Várnai,^c Bernd Wittgens,^a

Rigorous model from prior literature is used here to optimize the pyrolysis process to maximize bio-oil yield and lignin conversion

Soft modelling of spruce conversion into bio-oil through pyrolysis – Note II: pyrolysis - ScienceDirect

Sub-models implementation

Example: enzymatic saccharification model

$$\gamma(\mathbf{t}) = \gamma(\mathbf{0}) + \mathbf{h} \cdot [\mathbf{1} - \exp(-\mathbf{k}_{R} \cdot \mathbf{t})]$$
$$\gamma(\mathbf{0}) = \mathbf{a}_{1} \cdot [\mathbf{E}] + \mathbf{a}_{2}$$

$$h(T_{SE}, [E]) = (a_3 \cdot T_{SE} + a_4) \cdot [E] + (a_5 \cdot T_{SE} + a_6)$$

$$\mathbf{k}_{R}(\mathbf{T}_{SE}, [E]) = (\mathbf{a}_{7} \cdot \mathbf{T}_{SE} + \mathbf{a}_{8}) \cdot [E] + (\mathbf{a}_{9} \cdot \mathbf{T}_{SE} + \mathbf{a}_{10})$$

- <u>**a**</u>_i **regressed on experimental data** from lab-scale setup (Hansen et al., 2022, ACS Sustainability)
- Yield depends on DoE parameters
 - residence time (t),
 - enzyme concentration [E],
 - T of steam explosion pre-treatment (T_{SE})

90

PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering (ESCAPE33), June 18-21, 2023, Athens, Greece © 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50121-9 Soft modelling of spruce conversion into bio-oil

Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

through pyrolysis – Note I: steam explosion and LPMO-activated enzymatic saccharification

Matteo Gilardi, ^a Filippo Bisotti,^{a,*} Olaf T. Berglihn, ^a Roman Tschentscher,^b Vincent G.H. Eijsink, ^c Anikó Várnai, ^c Bernd Wittgens, ^a

Soft modelling of spruce conversion into bio-oil through pyrolysis – Note I: steam explosion and LPMO-activated enzymatic saccharification - ScienceDirect

Sub-models implementation

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (nrel.gov)

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

BIO4 FUELS

 \bigcirc

SINTEF

Flowsheet in COFE

Computer Aided Chemical Engineering Volume 53, 2024, Pages 2449-2454

From laboratory scale to innovative sprucebased biorefinery. Note I: Conceptual process design and simulation

Filippo Bisotti ° 🖾 , Matteo Gilardi ° 🖾 , Olaf T. Berglihn °, Roman Tschentscher ^b, Line D. Hansen ^c, Svein J. Horn ^c, Anikó Várnai ^c, Bernd Wittgens ^o

BIO

FUFIS

SINTEF

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

Note I: Conceptual process design and simulation

COCO - the CAPE-OPEN to CAPE-OPEN simulator (cocosimulator.org)

Next step: fully integrated biorefinery

Now we have a flowsheet for standard biorefinery... but we can improve it!

Flowsheet development

- Process optimisation
- Lower consumption: energy integration
- Identify process intensification loops
- Increase productivity: valorise wastes and low-value streams

Optimization: to a fully integrated biorefinery

Simple flowsheet

14

Computer Aided Chemical Engineering Volume 53, 2024, Pages 2653-2658

From laboratory scale to innovative sprucebased biorefinery. Note II: Preliminary techno-economic assessment

Matteo Gilardi ° 쩝 , Filippo Bisotti ° 쩝 , Olaf T. Berglihn °, Roman Tschentscher ^b, Line D. Hansen ^c Svein J. Horn ^c, Anikó Várnai ^c, Bernd Wittgens [°]

Note II: Preliminary techno-economic assessment

Next step: assessment

Now you have anything in place...

Technology investigation

- Technoeconomic assessment (TEA) → PROFITABLE?
- Life cycle analysis (LCA) → CARBON MITIGATION?

FME Bio4Fuels - Norwegian Centre for Sustainable Bio-Based Fuel and Energy

 \bigcirc

SINTEF

CO LaN

Can it be carbon negative? Yes

SINTEF Industry's in-house tool for CO2 capture simulation and optimization

CO **v** LaN

Project portfolio with CAPE-open tools...

In SINTEF Industry – Process Technology we are CAPE-open and COFE friendly!

BI

SINTE

SEMPRE-BIO

Fuel[≦]Up EL XYCHEM & HYDROGENI

... and dissemination on **CAPE-open potential!**

Acknowledgements

The authors are grateful to **Bio4Fuel** (grant No 257622), part of the **FME program**

Bio4Fuels Norwegian Centre for Sustainable Bio-Based Fuel and Energy

fme.bio4fuels@nmbu.no

A big thanks to my colleagues involved in the modelling of bio-/electro- chemical processes:

Matteo Gilardi **Research Scientist** SINTEF Industry

Filippo Bisotti Research Scientist SINTEF Industry

Bernd Wittgens Senior Advisor SINTEF Industry

Olaf T. Berglihn Senior Researcher SINTEF Industry (formerly)

Theresa Rücker Research Scientist SINTEF Industry

Torbjørn Pettersen Senior Project Leader SINTEF Industry

Thank you for your kind attention

ANY QUESTIONS?/

BIO4 FUELS

CENTRE FOR ENVIRONMENT-FRIENDLY ENERGY RESEARCH